Enhancing Data Integrity through Provenance Tracking in Semantic Web Frameworks

aaronmarkham | 2025-01-21 | Computer Science | nova | Source

This paper explores the integration of provenance tracking systems within the context of Semantic Web technologies to enhance data integrity in diverse operational environments. SURROUND Australia Pty Ltd demonstrates innovative applica-tions of the PROV Data Model (PROV-DM) and its Semantic Web variant, PROV-O, to systematically record and manage provenance information across multiple data processing domains. By employing RDF and Knowledge Graphs, SURROUND ad-dresses the critical challenges of shared entity identification and provenance granularity. The paper highlights the company's architecture for capturing comprehensive provenance data, en-abling robust validation, traceability, and knowledge inference. Through the examination of two projects, we illustrate how provenance mechanisms not only improve data reliability but also facilitate seamless integration across heterogeneous systems. Our findings underscore the importance of sophisticated provenance solutions in maintaining data integrity, serving as a reference for industry peers and academics engaged in provenance research and implementation.

Status:
completed
0:00 0:00
Transcript
Related Podcasts
ScholaWrite: A Dataset of End-to-End Scholarly Writing Process

Similar Category

Listen
AdaptBot: Combining LLM with Knowledge Graphs and Human Input for Generic-to-Specific Task Decomposition and Knowledge Refinement

Similar Category

Listen
Fast3R: Towards 3D Reconstruction of 1000+ Images in One Forward Pass

Similar Category

Listen